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Abstract 

1. The study considered the comparisons of the proposed sub-ridge regression method with 

ridge and OLS for shrinkage factor, for data with or without multi-collinearity. The various 

values of the shrinkage factor k were simulated and tested for ridge and sub-ridge 

regression and the results were compared with the Ordinary Least Square analysis initially 

done for three different sample sizes, 50, 75 and 100 for five economic data and they were, 

Exchange rate, Unemployment, Inflation. The value of k=0.0000005 was proposed as the 

convergent factor for which the Sub-Ridge becomes equal to the OLS parameters. As the k 

value decreases, the sum of square error of the Sub-Ridge regression parameters also 

decreases, for k=0.000007 the sum of square of the Sub-Ridge became equal to the sum of 

square error of the Ridge. The study recommended among other things that, even in the 

absence of multi-collinearity, Ridge regression and Sub-Ridge regression can still be used 

in obtaining equal parameter estimates and equal sum of square errors with the Ordinary 

Least Square, but for k value of 0.000007 for Ridge and k value of 0.0000005 for Sub-

Ridge. 

Keywords: OLS, Ridge, Sub-ridge regressions, determinant, condition index, VIF. 

 

1. Introduction 

Regression analysis is known as a powerful analysis that can investigate multiple variables 

simultaneously to answer complex research questions. Nevertheless, if you do not satisfy the 

ordinary least square regression (OLS) assumptions, you might not be able to trust the results (Jim, 

2020). Regression analysis is like other inferential methodologies with the goal of drawing a 

random sample from a population and use it to estimate the properties of that population. In 

regression analysis, the coefficients in the regression equation are estimates of the actual 
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population parameters, it is expected that these coefficient estimates be the best possible estimates. 

Supposing one requests an estimate for the cost of a service that is being considered, a reasonable 

estimate can be defined by: 

a) The estimates should tend to be right on target, which means that, they should not be 

systematically too high or too low. In a simplified way, it should be unbiased. 

b) Recognizing that estimates are almost never exactly correct, you want to minimize the 

inconsistency between the estimated value and actual value, because large differences are 

not good. 

The above two properties are precisely what we need for our coefficient estimates. If the linear 

regression model satisfies the OLS assumptions, the procedure generates unbiased coefficient 

estimates that tend to be relatively close to the true population values (minimum variance). As long 

as your model satisfies the OLS assumptions for linear regression, one can rest, knowing that the 

best estimates are being obtained.  According to Onu, et al. (2021) and Shalabh (2012), a simple 

linear regression is an approach in statistics that is employed in the modeling of a linear surfaces. 

Regression analysis can be linear, nonlinear, second-order (quadratic or polynomial) regression. 

The problem of multicollinearity in a data set has gone a long way in falsifying regression results, 

hence, introduction of ridge regression to be used when the data have been confirmed of having 

the presence of multicollinearity. To determine whether or not there is multicollinearity in a data 

set, statistical test have to be conducted. This test is also one of the setbacks in research work. In 

overcoming the testing of data for multicollinearity in this particular case of outlier or 

multicollinearity, the introduction of a proposed method is considered. Though, this research was 

in line with work of Nelson, et al. (2024) who proposed two of such methods (Mult- and Inverse- 

Ridge Regressions  with similar approaches but different principles). The proposed method in this 

work is known as the Sub-ridge regression approach. This method gives equal or approximate 

equal results with the ridge and the ordinary least square regression. This is independent of whether 

the data has presence of multicollinearity or not. The ideal of testing data for this reason is a thing 

of the past. 

Abubakari (2019) used Principal components as remedial to multicollinearity problem. Using a 

sample of six hundred participants, linear regression model was fitted and collinearity between 

predictors was detected using Variance Inflation Factor (VIF). After confirming the existence of 

high relationship between independent variables, the principal components were utilized to find 

the possible linear combination of variables that can produce large variance without much loss of 

information. The results show that Variance Inflation Factor values for each predictor ranged from 

1 to 3 which indicates that multicollinearity problem was eliminated. Finally, another linear 

regression model was fitted using Principal components as predictors. The assessment of 

relationship between predictors indicated that no any symptoms of multicollinearity were 

observed. 

Younker (2012) have studied Ridge Estimation and its Modifications for Linear Regression with 

Deterministic or Stochastic Predictors, the study used multiple regression problem where 

Statistical inference problems is often accompanied by the ’bias-variance trade-off’. For a fixed 

number of observations every additional explanatory variable typically causes coefficient estimates 

http://www.iiardjournals.org/


 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699 P-ISSN 2695-

1924 Vol 10. No.2 2024 www.iiardjournals.org (Online Version) 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 24 

to become less certain. As confidence intervals around these estimates expand, in time, 

interpretation and forecasting power are risked. 

2. Materials and Methods 

Testing for Outliers in a Data set 

Grubb’s test was used to detect outlier since it detects one outlier at a time. It involves the following 

steps as seen in Nelson, et al. (2024). 

(i)  Order the data point from smallest to largest.  

(ii) Find the mean and standard deviation of the data set. 

(iii) Calculate the G-test statistic using one of the following equations. 

In test for outliers in this study, Grubbs’ test was employed and it is given as 

𝐺 = 𝑀𝑎𝑥
𝑖=1,...,𝑁

|𝑌𝑖−𝑌̅|

𝑠
          (1) 

𝑌𝑖is the sample data from a given population, here it represents any of GDP, FDI, Exchange rate, 

Inflation rate and Unemployment rate and  𝑌̅ is the sample mean, while  𝑠 is the sample standard 

deviation. 

The Grubbs test can also be given as a one-sided test as 

𝐺 =
𝑌̅−𝑌𝑚𝑖𝑛

𝑠
           (2) 

 or 

𝐺 =
𝑌𝑚𝑎𝑥−𝑌̅

𝑠
          (3) 

The test is based on the assumption of normality. It detects one outlier at a time, the outlier detected 

is removed from the data set and the test is repeated until no more outlier is detected. 

𝑌̂ =
Ʃ𝑌𝑖

𝑛
                                                                                                                           (4) 

Where, 𝑌̂ is the arithmetic mean 

𝑌𝑖 is individual data value 

n is the total number of data 

S=√
Ʃ(𝑌𝑖−𝑌̂)

2

𝑛−1
    is the standard deviation                                                                      (5) 

Geometric mean is √𝑦1𝑥𝑦2𝑥𝑦3𝑥. 𝑥. 𝑥. 𝑦𝑁
𝑁                                                                  (6) 

Harmonic mean is  H,M =
𝑁

(
1

𝑌1
+ 

1

𝑌2
+
1

𝑌3
+⋯+

1

𝑌𝑁
)
                                                            (7) 

Median is given as the size of 
(𝑁+1)

2

𝑡ℎ
𝑖𝑡𝑒𝑚                                                              (8) 

Testing for the Presence of Multi-collinearity in the Data Set 

Testing for multi-collinearity in the data sets, we employ the following methods. 

 

Variance Inflation Factor (VIF) 

Variance Inflation Factor according to Ayuya, (2021) and Deanna, (2018), the VIF is given as 

𝑉𝐼𝐹 =
1

1−𝑅2
           (9) 
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Where Coefficient of Determination (𝑅2) is the R-squared value obtained from the regression of  

𝑋𝑖 on the other independent variables. It is seen, if the R-squared in the denominator gets closer 

and closer to one, the VIF will get larger and larger. The rule of thumb cut-off value for VIF is 10. 

Solving backwards, this translates into an R-squared value of 0.90. Hence, whenever the R-squared 

value between one independent variable and the rest is greater than or equal to 0.90, you will have 

to face multi-collinearity. 

According to Thompson, et al. (2017) and Nelson, et al. (2024), the coefficient of determination is 

given as 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 

Ʃ(𝑦̂𝑖 − 𝑦̅)
2

Ʃ(𝑦𝑖−𝑦̅)
2 =1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
  = 1 −

Ʃ(𝑦𝑖 − 𝑦̂𝑖)
2

Ʃ(𝑦𝑖−𝑦̅)
2  

Condition Number and Condition Index 

In order to find the eigen values of a matrix, given a k x k matrix A, a k x k identity matrix 𝐼 and 

an eigen value ℷ, the following steps are to be followed: 

a) Be sure that the given matrix A is a square matrix k x k. 

b) Estimate the matrix. That is |𝐴 − ℷ𝐼| 
c) Find the determinant of the matrix. 

d) From the equation obtained|𝐴 − ℷ𝐼| = 0 

e) Calculate all the possible values of the equation. 

The square root of the ratio between the maximum and each eigenvalue (λ1, λ2, …, λk) is 

referred to as the condition index:  

𝑘𝑠 = √
𝜆𝑚𝑎𝑥

𝜆𝑠
, (𝑠 = 1,2, … , 𝑘)                   (10) 

The largest condition index is called the condition number and is the most widely used estimator 

to measure the strength of multi-collinearity called condition number by (Vinod & Uallh, 1981) 

is defined as  𝑘 =  √
λ𝑚𝑎𝑥

λ𝑚𝑖𝑛
                                                                                            (11) 

Where λ𝑚𝑎𝑥 and λ𝑚𝑖𝑛  are the largest and smallest eigenvalues of the matrix 𝑋′𝑋 respectively. If 

λ𝑚𝑖𝑛 is zero, then is k is infinite, means perfect multi-collinearity among the independent 

variables and if λ𝑚𝑎𝑥 is equal to λ𝑚𝑖𝑛, then k is one, means the independent variables are said to 

be orthogonal. If k is between 30 to 100, it indicates a moderate to strong multi-collinearity. Any 

k value greater than 100 suggests severe multi-collinearity and larger value indicates serious 

multi-collinearity. 

Correlation 

This study is interested in the correlation that exist between two predictor variables as seen  

http://www.iiardjournals.org/
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𝑟𝑥𝑖𝑥𝑗 =
𝑛∑𝑥𝑖𝑥𝑗−(∑𝑥𝑖)(∑𝑥𝑗)

√(𝑛∑𝑥𝑖
2−(∑𝑥𝑖)

2)(𝑛∑𝑥𝑗
2−(𝑥𝑗)

2)
        (12)  

Where  𝑥𝑖 and  𝑥𝑗 represent the 𝑖𝑡ℎand 𝑗𝑡ℎ predictor variables, the higher value of  𝑟 indicates higher 

presence of multicollinearity, while the lower value of 𝑟 indicates reduced presence of 

multucollinearity.  The formula of the correlation is as seen in Onu, et al. (2021).   

Determinant of a Matrix 

Key Points of determinant 

a) Let A be an m×n matrix and k an integer with 0<k≤m, and k≤n.  A k×k minor of A is the 

determinant of a k×k matrix obtained from A by deleting m-k rows and n-k columns. 

b) The first minor of a matrix Mij is formed by removing the ith row and jth column of the 

matrix, and retrieving the determinant of the smaller matrix. 

c) The cofactor of an element aij of a matrix A, written as Cij is defined as (−1)𝑖+jMij. 

Key Terms  

a) Cofactor: The signed minor of an entry of a matrix. 

b) Minor: The determinant of some smaller square matrix, cut down from matrix A by removing 

one or more of its rows or columns (Boundless, 2018). 
 

The Parameter Estimates of Ordinary Least Square 

This study will employ a five-parameter probabilistic model given as 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + ԑ       (13) 

Where 𝑌 is the Gross Domestic Product (GDP) of Nigeria used as the response variable, while 

𝑋1is the Exchange rate, 𝑋2is the Unemployment rate, 𝑋3 represents the Inflation rate, and 𝑋4 is the 

Foreign Direct Investment (FDI) in Nigeria are the predictor variables, 𝛽0, 𝛽1, 𝛽2, 𝛽3 𝑎𝑛𝑑 𝛽4 are 

the unknown model parameters while ԑ is the stochastic disturbance or simply the error. The model 

in equation (13) is a multiple linear regression and it can be written in matrix form as: 

𝑌 = 𝑋𝛽 + ԑ           (14) 


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where 𝑋 is an 𝑁 × 𝑃 matrix, 𝑌 is an 𝑁 × 1 vectors of observed parameters and 𝛽 is a  

𝑃 × 1 vectors of unknown parameters and ԑ~𝑁(0, 𝛿2) is the error term. The model in 3.13 we 

obtain the matrix 𝑋, the transpose of this matrix is obtained given as 𝑋′. The matrix 𝑋 is multiplied 

by its transpose to obtain 𝑋′𝑋 known as the information matrix. The inverse of 𝑋′𝑋 is obtained by 

using the formula 
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(𝑋′𝑋)−1 =
𝐴𝑑𝑗𝑜𝑖𝑛𝑡(𝑋′𝑋)

det (𝑋′𝑋)
         (15) 

Where det (𝑋′𝑋) is the determinant of 𝑋′𝑋. 

The transpose of 𝑋 is multiplied by the response variable 𝑌 to obtain 𝑋′𝑌. In order to obtain the 

parameters of the model in 1.3, the Ordinary Least Square formula is applied and given as seen in 

(Iwundu & Onu, 2017, Onu, et al. 2021 and Kutner, et al.2005). 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌          (16) 

The Parameter Estimates of Ridge Regression for varying Values of Shrinkage Penalty 

The Ridge Regression is like the Ordinary Least Square method; the only difference is the addition 

of the quantity KI to the information matrix to remove the effect of multi-collinearity in the 

analysis. K is a constant that takes on values not greater than 0.2 and the smaller the value of K, 

the better the Ridge parameters estimated and the higher the values of K above 0.2, the more the 

information matrix becomes singular matrix (Nduka & Ijomah, 2012). 

It is given by the formula 

𝛽̂ = (𝑋′𝑋 + 𝐾𝐼)−1𝑋′𝑌         (17) 

Where I is an identity matrix. 

 

The proposed Estimates of Subtraction based Ridge Regression for varying Shrinkage 

Penalty Values (Sub-ridge regression). 

This is one of the approaches that was developed in this research to see how it can compete with 

the popularly known Ordinary Least Squares and the Ridge Regression, that is used with or without 

multi-collinearity in the data sets. It is given as 

𝛽̂ = (𝑋′𝑋 − 𝐾𝐼)−1𝑋′𝑌         (18) 

All the variables have their usual meaning.   

 

 

3. Results and Discussion 

 

Investigating the Presence of Multi-collinearity  

We are to test the presence of multi-collinearity in the data of Exchange rate, Unemployment rate, 

Inflation rate and Foreign direct investment as predictors and the Gross Domestic Product in 

Nigerian using the following methods 

Given that  Matrix 𝑋′𝑋= 

(

 
 

30 51.42 560.41 134.39 3999.50
51.42 129.63 1219.85 207.96 5508.88
560.41
134.39
3999.50

1219.85
207.96
5508.88

18624.82
2424.55
55538.91

2424.55 55538.91
676.47 21657.64

21657.64 800875.37)

 
 

 

The table 1 below shows the eigen values obtained. The largest condition index is called the 

condition number which is 4.9413 and is less than thirty, it indicates moderate or not serious multi-

colliearity. 
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Ordinary Least Square Regression 

Regression Analysis: GDP versus FDI, INFL, UNEMPL, EXCH 

Table 2: Analysis of Variance (ANOVA) of the Selected Economic Variables Data 

Source of variation 

Degree of 

Freedom 

Sum of 

Square 

Mean of 

Squares F-Value P-Value 

Regression 4 204.345 51.086 6.16 0.001 

FDI 1 4.480 4.480 0.54 0.469 

INFL 1 5.826 5.826 0.70 0.410 

UNEMP 1 107.160 107.160 12.92 0.001 

EXCH 1 54.359 54.359 6.55 0.017 

Error 25 207.378 8.295 
  

Total 29 411.723 
   

 

 Summary of the fitted model: 

Root Square Error R-squared R-squared (adjusted) R-squared (predicted) 

2.88013 49.63% 41.57% 35.12% 

 

GDP = 13.1323 - 0.406 FDI - 0.0372 INFL - 2.654 UNEMPL + 0.0327 EXCH 

   

Table 3: Sum of Square Error, Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) Values.  
 

 RIDGE SUB-RIDGE 

K SSE AIC SBC SSE AIC SBC 

0.000010 207.38 68.00 75.00 207.38 68.00 75.00 

0.000005 207.38 68.00 75.01 207.38 68.00 75.01 

0.000050 207.38 68.00 75.00 207.38 68.00 75.00 

0.000070 207.38 68.00 75.01 903.11 112.14 119.15 

0.000080 207.38 68.00 75.01 207.38 68.00 75.01 

0.000320 207.38 68.00 75.00 207.38 68.00 75.00 

0.000500 207.38 68.00 75.00 207.38 68.00 75.00 

0.000900 207.38 68.00 75.01 207.38 68.00 75.01 

0.002430 207.38 68.00 75.00 207.38 68.00 75.00 

0.005000 207.38 68.00 75.00 207.38 68.00 75.00 

0.006000 207.38 68.00 75.01 207.39 68.00 75.01 

http://www.iiardjournals.org/
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0.010240 207.38 68.00 75.00 207.38 68.00 75.00 

0.031250 207.50 68.02 75.02 207.51 68.02 75.02 

0.050000 207.67 68.04 75.05 207.72 68.05 75.06 

0.077760 207.06 68.10 75.10 208.23 68.12 75.12 

0.100000 20847 68.16 75.16 208.83 68.21 75.22 

0.116000 208.82 68.21 75.21 209.39 68.29 75.30 

0.168070 1.48e10 1.18e11 1.18e11 8008.78 9453.92 391.85 

0.200000 211.23 68.55 75.56 738.88 106.12 113.12 

0.300000 215.07 69.09 76.10 225.62 70.53 77.54 

0.327680 216.27 76.27 83.27 230.27 71.14 78.14 

0.400000 219.59 69.72 76.72 246.54 73.19 80.20 

0.500000 224.51 70.38 77.39 282.75 77.30 84.31 

0.590490 229.16 71.00 78.00 336.96 82.56 89.56 

0.600000 229.66 71.06 78.07 344.33 83.21 90.22 

0.700000 234.90 71.74 78.74 449.91 91.24 98.24 

0.800000 240.15 72.40 79.41 636.36 101.64 108.64 

0.900000 245.35 73.04 80.05 983.70 114.70 121.71 

0.999000 250.40 73.66 80.67 1679.05 130.74 137.74 

0.999990 250.45 73.66 80.67 1689.09 130.92 137.92 

1.000006 250.45 73.66 80.67 1689.25 130.93 137.93 

1.000009 311.52 80.21 87.21 1689.25 130.93 137.93 

1.000010 250.45 73.66 80.67 1689.29 130.93 137.93 

1.000020 250.45 73.66 80.67 1689.29 130.93 137.93 

1.000030 250.45 73.66 80.67 1689.29 130.93 137.93 

1.000040 250.45 73.66 80.67 1689.29 130.93 137.93 

1.000050 250.45 73.66 80.67 1689.29 130.93 137.93 

1.000060 250.45 73.66 80.67 1689.29 130.93 137.93 

1.000070 250.45 73.66 80.67 1689.29 130.93 137.93 

1.000080 250.45 73.66 80.67 1690.57 130.95 137.95 

1.000090 250.45 73.66 80.67 1689.99 130.94 137.94 
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1.000100 250.45 73.66 80.67 1690.21 130.94 137.95 

1.000200 928.77 112.98 119.99 1691.22 130.94 137.95 

1.000300 250.46 73.66 80.67 1692.25 130.94 137.95 

1.000400 311.57 80.21 87.22 1693.27 131.00 138.00 

1.000500 250.47 73.66 80.67 1694.28 131.01 138.01 

1.000600 250.48 73.66 80.67 1695.30 131.03 138.03 

1.000700 250.48 73.66 80.67 1696.33 131.04 138.94 

1.000800 250.49 73.67 80.67 1697.36 131.07 138.07 

1.000900 250.49 73.67 80.67 1698.35 131.07 138.07 

1.009000 250.90 73.72 80.72 1784.32 132.57 139.57 

 

Table 4: The Proposed Convergent Points 
 

K OLS Ridge Sub-Ridge 

0.000000 13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

 13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

 

0.000005    

13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

tx  

13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

tx 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

0.000007   13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

 

-0.73 

-0.84 

-3.60 

2.56 

13.1324 

-0.4062 

-0.0372 

-2.6536 

0.00327 

 

-0.73 

-0.84 

-3.60 

2.56 
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0.999999  7.8091 

0.3414 

-0.0566 

-1.3887 

0.0213 

3.34 

0.62 

-1.27 

-1.88 

1.66 

44.3455 

-4.9425 

0.0870 

-10.0991 

0.1008 

18.95 

1.70 

1.96 

-13.68 

7.88 

1.000006  7.8091 

0.3414 

-0.0566 

-1.3887 

0.0213 

3.34 

0.62 

-1.27 

-1.88 

1.66 

44.3463 

-4.9426 

0.0870 

-10.0993 

0.1008 

18.95 

-8.94 

2.00 

-13.68 

7.88 

          

Discussion of Results 

Test for Outliers in the Data Set 

The analysis of the result for test of outliers reveals that not all the variables have outlier in the 

data used in this study (not severe). These results show that Ordinary Least Square regression will 

be a better technique to be applied. The analysis of the results indicated that from the five selected 

economic variables used, using Grubb’s method test for outlier detection, one outlier was detected 

on gross domestic products, there was no outlier detected on unemployment rate, only one outlier 

was equally detected on inflation rate, two outliers were detected on foreign direct investment and 

no outlier was detected on exchange rate. Each of the selected economic variables gives the same 

result, irrespective of the type of mean used. Grubb’s test was not performed on some variables 

due to no mode. Since, there are some outliers that may cause multi-collinearity in a data set. 

Therefore, Ridge regression would be a better approach to use. 

Test for Multi-collinearity in a Data Set 

From the given information matrix and the result of determinant of information matrix shows that 

there is no presence of multi-collinearity or multi-collinearity is not a problem since the result is 

far from zero. This result has not contradicted the result of the condition index. The test for multi-

collinearity, using condition number and condition index, shows that there is presence of multi-

collinearity among the predictor’s variables but mild or not serious, since the largest condition 

index is 4.9413 and is less than 100. Also, the correlation between exchange rate and 

unemployment rate has a high value of 0.838, which shows that multi-collinearity is a problem 

between these two variables. But generally, the correlation reveals that multi-collinearity is not a 

problem. Because the pair of other variables had smaller correlation value. 

Simulation of the Various Shrinkage Penalty Values and its Effect on the Parameters 
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The study discovered that for k-value of 0.0000, the ordinary least square (OLS) regression, Ridge 

regression and Sub-Ridge regression, gave equal values of parameters estimates. This study also 

suggests that needless of testing for multi-collinearity in a dataset, because this can lead to further 

academic stress, instead, some values of k were proposed for use to ensure that the ordinary least 

square (OLS) parameters, the Ridge and Sub-Ridge regression parameters are equal, whether there 

is multi-collinearity or not in the dataset. For k range of 0 to 0.00005, the Ridge and Sub-Ridge 

regression equations can be used to estimate parameters of a linear model and this result will give 

equal value of parameter estimate with the ordinary least square (OLS), irrespective of the presence 

of multi-collinearity or not in the data. The simulated result shows that the Ridge regression and 

the Sub-Ridge regression parameters are equal and equal to the OLS regression parameters for 

k=0.0000005, 0.0000001, 0.0000002, 0.0000003, 0.0000004, 0.0000006. The k values of 

0.000006 and 0.000007, gave equal parameter estimates for Sub-Ridge regression, but differed in 

the estimation of the intercept or grand mean parameter of the Ridge regression. 

Sum of Square Error for Varying Shrinkage Penalty Values 

The sum of square error for the k-values from 0.00001 to 0.01024 gave a sum of square error equal 

or approximately equal to 207.38 for both Ridge regression and Sub-Ridge regression equations, 

The higher the value of k, the more the ordinary least square (OLS) regression parameters differ 

appreciable from the Ridge and tends to zero as the k value increases further. In addition, in the 

analysis of the sum of square error for Ridge regression, it was observed that as the k value 

decreases, the sum of square error of the Ridge regression decreases, the smaller the sum of square 

error, the better the regression equation. As the k value decreased up to 0.000007, the sum of square 

error of the Ridge and that of the Sub-Ridge regressions became equal.  

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) Values.  

From table 4.20 it was observed that the difference between Akaike Information Criterion and 

Bayesian Information Criterion Values is a constant or approximately with a value of seven, 

except for the shrinkage penalty of 0.168070 that produced a sum of square error of 1.48e10. In 

this particular value of k, Akaike information criterion and Bayesian information criterion are 

equal, which means that their difference is zero. 

 

Parameters of Sub-Ridge Regression for Varying Shrinkage Penalty Values 

The k-value of 0.0000005 was proposed as the convergent point for which the Sub-Ridge 

regression parameters and ordinary least square (OLS) regression give equal parameter estimates. 

It was observed that for k=0.006, the values of the Sub-Ridge regression parameters are found 

greater than those of the Ordinary Least Square parameters. As the value of k decreases to 0.0009, 

the values of the Sub-Ridge parameters also decrease closer to OLS value. As the k value decreases 

further to 0.00008 the Sub-Ridge regression value further decreases, at a certain k value of 

0.000007, the parameters of the Sub-Ridge regression decrease more and more towards the OLS 

parameters. This was the value of k for which the Ridge regression became equal to the OLS, but 

such was not the case for Sub-Ridge regression, but for k=0.0000005, the Sub-Ridge regression 

became equal to the OLS parameters. The value of k=0.0000005 was proposed as the convergent 
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factor for which the Sub-Ridge becomes equal to the OLS parameters. As the k value decreases, 

the sum of square error of the Sub-Ridge regression parameters also decreases, for k=0.000007 the 

sum of square of the Sub-Ridge became equal to the sum of square error of the Ridge. 

 

Conclusion 

It is obvious that ordinary least square regression is better in the estimation of parameter for data 

without multi-collinearity or when multi-collinearity is not a problem, but in such a situation, 

Ridge regression can also be used but for k value of 0.000007, while Sub-Ridge regression can be 

used for k value of 0.0000005. All the above stated regression approaches will give equal 

estimation of parameters with the OLS and which also gives equal sum of square errors. It also 

concludes that the Sub-Ridge regression was somewhat better than the Ridge on the area that for 

increasing values of k, the Ridge regression will first have its parameter value equal to zero before 

the Sub- Ridge regression will become zero at some further increasing values of k. The both 

regression methods are better for decreasing values of k. Among the several methods of identifying 

multi-collinearity considered in this work, the Variance Inflation Factor, Correlation and the 

determinant of the information matrix were proved to be the best according to the order listed 

above from VIF as the best to the determinant of information matrix. This was because, the VIF 

and the Correlation revealed where the source of the little multi-collinearity in the data which was 

not a problem and the determinant showed that there was no multi-collinearity, since it was not a 

problem but condition number stated otherwise.  

Recommendations 

In course of this study, it was recommended to statisticians, researchers, government agencies and 

other agencies that; 

1) Even in the absence of multi-collinearity, Ridge regression and Sub-Ridge regression 

can still be used in obtaining equal parameter estimates and equal sum of square errors 

with the Ordinary Least Square, but for k value of 0.000007 for Ridge and k value of 

0.0000005 for Sub-Ridge. 

2) The proposed ridge regression can be used in a data set with or without multi-

collinearity for k value of 0.000005.  

3) Apart from arithmetic mean, any other measurements of central tendency can be used 

in the Grubb’s method in detecting outliers. 
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